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The weight-space of the binary perceptron

R W Penney and D Sherrington
Department of Physics, Theoretical Physics, 1 Keble Road, Oxford CX1 3NP, UK

Received 22 July 1993

Abstract. With a view to finding features of the weight-space of the binary perceptron that
might be instructive for training binary-synapse neural networks, the maximally-stable perceptron
having binary-valued weights is compared with continuous-weight perceptrons, for universal
choices of stored patterns. The fraction of synaptic-weights correctly predicted by clipping the
synapses of the continuous network is calculated in the thermodynamic limit and compared with
simulation results for smatler systems. Numerical experiments show good agreement with theory
but, in addition, indicate that those binary synapses likely to be wrongly predicted by weight-
clipping are predominantly those which are weakest in the continuous-synapse perceptrom.
Although not rescuing training time from growing expornentially in the system size, our results
suggest ways of significantly accelerating the search for successful, albeit possibly imperfect,
neural networks with discrete-valued couplings.

- 1. Infroduction

Although, generically, neural networks have many attractive properties, such as an ability
to learn behaviour from examples and to function as associative memories (see e.g., Miiller
and Reinhardt 1990), unsurprisingly, their actual implementation is generally not facile.
However, the species of network, and particularly the nature of its synapses, often greatly
influences the ease with which such a network may be trained to fulfil a particular task.
Networks whose synaptic weights may take a continuum of values are typically far easier
to train than those with discrete-valued synapses, in spite of the practical attractions of the
latter in terms of simplicity and robustness. Training procedures for continuous-synapse
systems may profitably invoke gradient-descent methods; back-propagation (Rumelhart et
al 1986) being an extreme example or the AdaTron algorithm (Anlauf and Biehl 1989) is
a more sophisticated scheme. For discrete-synapse networks such an approach is clearly
inadmissible, and even simulated annealing is apt to fail to find good choices of weights in
finite time (Homer 1992).

In order to try to identify general features of binary-synapse networks, particularly
relative to similar networks with continuous synapses, we have examined the prototypical
task of associative memorization of random patterns by a network of N 4 I formal
neurons, S; € {*1}, { € {0...N}. The neurons are linked by synapses, Ji;, and have
a discrete-time dynamics S;(# + 1) = sgn(N~!/2 35 Ji8;(1)). A set of aN binary patterns,
£ € {£1}, p € {1...aN}, are intended to be attractors of these dynamics, representing
the memories, or concepts, learned. Requiring that these patterns are fixed points of the
neuronal dynamics, thereby demanding that the aligning fields, A} = N~!/2 2 S,-“Jij’s'f»
are all positive, generally leads to finite basins of attractions for the patterns only if the As
exceed a non-zero positive threshold, x. Imposing such requirements allows attention to be
confined to synapses feeding only a single neuron, which reduces the training problem to
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a perceptron architecture (i.e. a single output neuron connected to N input units). Given
that training a binary perceptron with noiseless data, corresponding to the maximally stable
mule (AY > x > D Vi, ), generally appears to be more demanding than learning optimal
behaviour for noise-corrupted information (see Penney and Sherrington 1993), it is the
former task that will be addressed here. The practically more interesting problem of
networks learning a rule from examples (see Watkin ef al 1993 for a recent review) is
expected to suffer from similar impediments to the idealized problem which we shall be
considering. Further, we will assume the most extreme form of discrete synapses, namely
those limited to values =1 only,

A number of training schemes for binary-synapse networks have been proposed.
Amongst these, the simplest is the clipped Hebb rule (van Hemmen 1987), genetic
algorithms have shown some value (Kohler 1990, Fontanari and Meir (1991) have even
used a genetic algorithm to evolve an iterative learning algorithmt), and corruption of a
network with continuous weights has been suggested (Pérez Vicente et al 1992, Penney
and Sherrington 1993). In this paper we will re-examine the latter method and explore
how much information about successiul binary-synapse networks might be inferred from a
system with real-valued synapses, whose direct construction is likely to be far more readily
accomplished than the system of ultimate interest.

For a specific choice of patterns, £, we imagine a network with continuous-valued
welghts (Jg}‘s € R) to be trained according to one of three popular schemes: the maximally
stable, pseudo-inverse and Hebb rules. Algorithms that produce, or rapidly approach,
realizations of these rules are well known, but we are not aware of any analogous methods
applicable to binary synapses, so it would be interesting to know how useful the existing
algorithms might be in training binary-synapse networks. Given that the most obvious
method of reducing a continuous synapse to a binary-valued one (J,-t_’,-i“) would seem, to be
clipping the former, producing J}}in = sgn(Ji}‘s), it would be instructive to know what
proportion of synapses could be correctly predicted by such a method and, moreover,
whether those synapses liable to be incorrectly predicted could be simply identified,
thereafter to be subjected to attention. Below, we will first address theoretical predictions
of the fraction of synapses correctly predicted by weight-clipping in large perceptrons,
and thereafter discuss simulations which comsider the second question in addition to
corroborating the theory,

2. The mutnal overlap of binary and spherical networks

For a given choice of patterns and training rules, the fraction of binary-valued synapses
(feeding a particular neuron, /) that can be correctly deduced by weight-clipping the
companion continuous network is given by

1 1 :
f= 5 [1 + v E J,-'}’“ sgn(JP } 2.0
J

in which J5™ and J{ represent networks successfully trained on the patterns, according to
their respective rules. If the networks concerned are farge (N 33> 1), then it is expected that
it is not the precise details of the patterns, Ej‘ , that are significant, rather their stochastic
properties, such as (gj‘); and (gj‘.gg};. In acknowledging the possibility that the training
procedures need not define networks uniquely (an effect accentuated by taking N large),
it would seem reascnable to consider averaging [ over choices of good networks of each
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species, and over the selection of patterns (which should be a benign operation). It is such an
average quantity that we have calculated, and on which we focus. The patterns are taken to
be independent, unbiased random variables of unit variance; (&J,‘-“); =0, (E}”&,;’)E = §; 8.
These comulants are common to the distributions p(§) = %(3 (€ —1)+46(5+1)) (true binary
patterns) and p(§) = CXP(—%EZ) /«/271' {*Gaussian’ patterns), a point which has implications
for numerical simulations of the theory.

Purely as an analytical device, it is wsual in discussing large continuous-synapse
networks, following Gardner (1988), to impose 2 normalization constraint on these synapses,
so that their weight-space becomies spherical, and thus has finite volume. The continuous-
valued weights meeting such a constraint will be denoted W;;, and choosing the norm such
that Zj W‘% = N Vi ensures that the hyper-cubic weight-space of the binary network is
a subset of the spherical space. Hereafter the continuous network will be referred to as
‘spherical’, and the labels “J;;> will be reserved for the binary synapses.

By applying replica mean-field theory to the joint weight-space of the two types of
network, f and a number of other insiructive quantities may be calculated. The calenlation,
sketched in the appendix, gives expressions for the following objects (in the limit ¥ — co,
and after suppressing the output index, i):

1 —_— 1 — .
p= _A_f ZJ: Jj Sgll(Wj) _ and F= N‘ ;Jl W, (22)
‘which reflect the similarities between the two classes of network that we have targeted,
1 —_— 1 —_— .
q=7v_;.wj and =7~.?JZ.%W" _ (2.3)
indicating the dispersal of networks over the two weight-spaces, and
1 —_— 1 J— i N R
=~ > W sgn(W)) m= > Wil and r=— > _ sgn(W;) sgn(W))
i J i

(2.4)

giving more information about the spherical network. (% denotes a weighted average of A
over all choices of the optimal networks of each species.) The order parameters g and @
are familiar from earlier works (Gardner 1988, Krauth and Mézard 1989), and are central to
the other conditions determining p, s, I, m and r. The fraction of binary synapses directly
deducible by clipping the continuous synapses is given by f = %(1 + p). The detailed
expressions determining these order parameters are unillominating, and are relegated to the
appendix.

For each of three classes of spherical network, we will explore how [ varies with the
pattern loading, o, for ¢ < (.83, this being the capacity limit of the maximally-stable
binary perceptron (Krauth and Mézard 1989). The three learning rules considered will be
as follows. o

(i) The maximally stable network (MSN), for which A" > % > ( where £ is
chosen to be as large as possible for the loading, o, subject to a spherical constraint on the
synapses. There is no requirement «*® = %" (where %™ is the analogous greatest lower
bound on the stabilities achievable with binary synapses); these thresholds are independently
determined by the pattern loading being such as to saturate each network.

sph
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(ii) The pseudo-inverse network (PIN) characterized by all patterns having the same
stability: A¥ PP — 40 Again, there is no implication that £ = b1 or, indeed, that
KMSN = KpPIN-

(iii) The Hebb rule has a Gaussian distribution of pattern stabilities centred on A% =
a2,

Hach of these learning rules allow the quantity f to be determined readily, using
appropriate performance measures given in the appendix; profiles of f(e) are shown in
figure 1. It is seen that, although the spherical MSN correctly predicts the largest fraction
of binary synapses compared with the other rules, simple weight-clipping does not produce
near-optimal binary networks unless the loading, &, is small. However, it is noteworthy
that upwards of 80% of synapses could be cormrectly determined using a spherical MSN.
The pattern stability field distribution for the clipped spherical MSN (pa(A)) was given in
Penney and Sherrington 1993 (equation (5.1)}, and using this one may calculate the fraction
of patterns that are unstably stored by the derived binary model in the absence of any further
training;

° 1 12 o —
v= f_oo Pua(£) A ~ W oxP (_E alr — 2)) a(nz ) asa — 0. 2.5)

For & = 0.8 y = 0.17, but by & = 0.4 the fraction of unstable patterns has fallen to 5%.

L MsN S
" PIN ]
0.7 b
L e Hebb R
B 1 1 1 I 1 L L i 1] 1 1 l L 1. 1 I _‘
0 02 04 06 0.8

Figure 1. The fraction of binary synapses (f) in an MSN that are correctly predicted by
weight-clipping three types of spherical networks (maximally stable, pseudo-inverse and Hebb),
compared with the upper bound %(3 + ¢), as a function of pattern loading, o, .

The distribution of optimal binary networks over their own weight-space itself provides
an upper bound on the average number of synapses that could be correctly predicted by
any algorithm that produces a single continuous-synapse netwotk. That there are optimal
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binary perceptrons that differ amongst themselves in a fraction of %(1 —g) synapses implies
that an arbitrary binary network must differ in at least a fraction %(1 —g) of synapses from
some optimal networks, Therefore, on averaging over all optimal networks, the number of
bits correctly predictable by a single network is bounded above by %(3+q)’[. In contrast to
_the spherical model, on saturation of a discrete-synapse network the order parameter g does
not generally reach unity (Krauth and Mézard 1989, Gutfreund and Stein 1990), indicating
wide dispersal of these networks; e.g., for @ =~ 0.8, g =~ 0.6. Although any algorithm
that correctly predicted all the binary synapses of a particular optimal network would be
a highly attractive scheme, that other optimal networks may not be close means that its
average overlap with all optimal networks would not be so impressive. In the absence of
a mechanism (and probably quite a sophisticated one) in the spherical-model learning rule
which favours its being useful for training a binary-synapse perceptron by weight-clipping,
it is reasonable to assume that the overlaps, f, depicted in figure 1 would represent the
overlap of any of the optimal binary networks with the glven spherical model. This assertlon
is lent weight by numerical simulations.

A further question that can be addressed using the order parameters (2.2) and (2.3) is
whether the centre of gravity of the optimal binary networks is parallel to that of the optimal
spherical networks, i.e. whether W = M Vi J, for some choice of A? Equivalently, one
could ask whether the minimum of N1 Z (W — AJ)?, with respect to A, is zero. This
quantity is minimized for the choice A = s /q, and from the positivity of each term in the
summation one has the identity

L _
—> (W, ~T;s/a¥ 20
N;r Y 2.6)

= 0 —s5%g >0

Thus, whether or not the two species of optimal networks have centres of gravity that
coincide may be determined using the order parameters calculated. It would appear that
this inequality is satisfied strictly. Thus, mapping all networks into the spherical-model’s
weight-space, the optimal binary networks are seen to be distributed asymmetrically about
the domain of optimal spherical models, which is perhaps contrary to intuitive expectations.

3. Insight from numerical experiments

The discreteness of the binary-model’s weight-space is a mixed blessing; unlike & continuous
space, the possibility of seéarching all points for the best possible network is open, whilst
this discreteness is at the root of the difficulty of constructing algorithms for training binary
perceptrons. Learning by exact enumeration of all 2% states of the binary synapses is
seemingly the only method known to produce optimal networks, despite the exponential
divergence of training time with system size. In secking to examine the properties of
optimal perceptrons, as addressed by the analysis, we are forced into exact enumeration,
and hence are limited to small system sizes relative to those accessible to algorithms such
as the AdaTron. -

+ More rigorously, one may consider bounding p = N1 ) J; sgn(W;) by the maximura of this quantity with
respect to {W;}. The supremum occurs for sgn{W;) = sgm(:ﬁ), but from the identity N—! Ej (T_,-— sgn(Tj))" =0,
one obtains p < 3(1+q), hence f < $(3 +¢).
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The theoretical predictions of the previous section suggest that existing learning rules for
continuous-synapse networks will always wrongly predict a finite fraction of synapses in a
binary network. Given that the lower bound on this fraction is finite, if exact enumeration of
the untrustworthy synapses was undertaken, this part of the training process would still scale
exponentially with the number of connections. However, if only perhaps 40% of couplings
required attention, learning timae would scale as e®¥ rather than e*V for the whole system.
For practical applications the increase in accessible system size thus afforded might well be
significant. ’

In performing simulations we have sought to test the hypothesis that those spherical-
synapses that are weakest are those that least-reliably predict binary-valued weights. It seems
unlikely that a very weak synapse in the spherical model could most often be replaced, in
converting it to a binary value, by a stronger synapse having only the same sign. Further,
those synapses that are strong in the spherical model are likely to be highly significant in
stabilizing patterns, and therefore not sensibly converted to one of opposing sign, as well as
being potentially weaker. In order to examine these ideas we have followed the following
strategy during the enumeration of the states of the binary synapses:

e For a given, random, choice of patterns, {!;{‘ }. a spherical-synapse network is trained on
these patterns using either Hebb's rule or the AdaTron algorithm. The starting configuration
of the binary synapses is derived by clipping these spherical weights. (A random starting
configuration is also considered.)

e The synapses are prioritized according to their magnitude in the continuous-synapse
network, and relabelled so that W; < Wy,

e The stability of the least stable pattern (according to the initial state of the binary
perceptron} is noted.

e The 2! states of weight J, are explored and if either of these two states produces better
minimum stability, this stability is noted and the relevant choice of synapses is recorded.

e The 2 combinations of Jy and J; are tested with similar procedures.

- *

e All 2¥ combinations of all synapses are examined in search of the maximum lower
bound on pattern stability, again noting the configuration that produces it.

Thus after the full enumeration, the accuracy of the initial weight-configuration is
manifested. Further, the evolution of the minimum stability during the enwmeration indicates
to what extent the use of the spherical network might allow subsequent training to be
confined to only selected binary synapses. If the instantaneous best minimum stability
rapidly approaches its asymptotic value then enumeration of only a subset of all synapses
would seem necessary; a more gradual improvement would signal that states of a larger
fraction of synapses would need exploring before the optimal network could be approached,
or attained. By continuing enumeration to completion, we may identify the optimal network
and compare it with the spherical model.

In affecting such a comparison an important feature of the theoretical approach must
be addressed. Given that our analysis relies on the taking of the thermodynamic limit,
N — oo (formally representing very large systems), and that in this limit only low-order
cumulant averages of the pattern elements, £/, have significance, for finite-size systems
the higher-order cumulants of the & will influence the suitability of the theory. As far
as the analysis is concerned, the & behave as Gaussian random variables (hence with
only two non-trivial cumulants), even though they strictly can assume only binary values
if they are to represent neuronal states. Given the modest number of synapses that can
be enumerated without inordinate consumption of computer time, it is unsurprising that
theory and simulations do not agree well when true binary patterns are used. However,
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in common with Krauth and Opper (1989) we find that the use of Gaussian patterns (for
which p(£/") = exp(—%ﬁ;{‘ 2) /+/27) brings theory and experiment into far more convincing
correspondence in their average behaviours. It is interesting that on average, binary patterns
behave more favourably than Gaussian patterns in terms of producing larger overlap with
the spherical model. Large fluctuations about the average behaviour beset both forms of
pattern however; this is another symptom of the meagre number of synapses.
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Figore 2. The evolution of the minimum pattern stability found, «, with the number of synapses
enumerated, *bit’. Only binary patterns are considered, for N =25, P = 13 = a = 0.52.

Pigure 2 shows the evolution of the maximum lower bound on pattern stability during
the epumeration and indicates the clear advantage of pre-training the binary network using
its spherical companion. The figure suggests that those synapses that are strongest in the
spherical model do appear to be reliable in predicting binary-valued synapses. As a further
test of this hypothesis, we also calculate the average magnitude of those spherical weights
that correctly predict their binary cousins ({|Wi}}) relative to the magnitude of the remaining
weights that make erroneous predictions ({{Wel}). This ratio can be expressed in terms of
accessible quantities (2.2), (2.4)

(AWd  mtsi—f
(Wely — | @0

m—s f

and is depicted in figure 3. Both simulations and theory lend some support to the
hypothesis, and again the behaviour for true binary patterns appears more favourable than
for Gaussian patterns, which themselves show better correspondence with the theory, as
might be expected.

The optimal binary networks identified during the enumeration procedure allow the
results of the previous section to be tested; comparison of theory and experiment is given
in figure 4.
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(LAVALEY

Figure 3. The ratio of the magritude of synapses in the spherical mode! which comectly predict
the corresponding binary synapses ({{Wi[}), to those weights which make incorrect predictions
({|Wel}). Simulation results for N = 25 are shown as circles (Gaussian patterns) and triangles
(binary patterns},

Figure 4. Comparison of the theoretical prediction of the fraction of correctly predicted binary
synapses, f, with simulation results for &/ = 25. Both binary patterns (trjangles) and Gausstan
patterns (circles) are shown, with error bars obtained from an ensemble of patterns. The
theoretical curves are as found in figure 1.
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In all cases, simulation results represent averages over approximately 100 choices of
patterns, and error bars, where shown, are standard deviations of the mean values represented
by the plotted points. The standard deviations of the relevant guantities themselves are a
factor approximately 10 larger, and that these are generally large for the system sizes
examined confirms the strong finite-size effects manifested by the binary perceptron (Amaldi
and Nicolis 1989, Krauth and Opper 1989, Deirida ef af 1991).

4. Conclusion

Rather than examining the weight-space of the binary perceptron in isolation (e.g. Fontanari
and Kéberle 1990), we have compared this with the weight-space of a companion network
with continuous-valued weights, but storing the same patterns as the binary network. Limits
on the utility of a network with contimious-synapse values in training one with binary
synapses have thus been indicated. Accessible algorithms applicable to the real-valued
synapses have been shown to be useful for directly predicting a significant fraction of the
discrete synapses (thereby rating the starting point in the training scheme of Pérez Vicente
et al (1992)) and, moreover, to provide guidance as to which weights are less faithfully
predicted. Simulation results have suggested that training by exact enumeration of the binary
weights may be facilitated by examining the corresponding real weights, thereby allowing
larger system sizes to be trained by this method than without any such information.
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Appendix

An overview of the weight-space calculation leading to expressions for the quantities in
(2.3), (2.4} and (2.2) will be given. Most of the methods of such calculations are widely
used, particolarly following the work of Elizabeth Gardner (1988).

It is typical of a mean-field theory that the calculation of a system’s free energy
naturally highlights the order parameters of physical significance, without necessitating prior
insight. Given that we will be addressing large, range-free (or infinite-dimensional), but
disordered, models, replica mean-field theory is the obvious methodology to employ. Thus,
by examining the total free energy of the union of a binary- and spherical-synapse network,
we expect to be able to find physically meaningful quantities that reflect the similarities of
these two components. Use of a simple trick ensures that the quantity of central interest,
namely the fraction of binary synapses correctly predxcted by weight-clipping, emerges
along with other relevant mformanon
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For each weight-space we impose a cost-function, E({J/}) = Z# g(A*) with a global
annealing temperature, 8~!, and examine the entire set of perceptrons according to a
Bolizmann weighting, exp(—B(E®®--E%4)}. On taking the temperature to zero, all networks
which fail to optimize the cost function are excluded from consideration, leaving features
typical of all optimal networks. Assuming the associated free energy to be self-averaging
in the stored patterns, we invoke the replica method, and proceed to calculate integer
moments of the partition function, subsequently analytically continuing our expressions to
small replica number, exploiting the identity (InZ} = lim,,o({Z"} — 1)/n. Our starting
point is

(Z")g (HTr{ by €Xp ( -8 Z ¢ Af.b,bin))
o
N
% f[de}E(Z sz - N) exp (_ B Egsph(A.;L,b,sph))) AD
=1 Z .

in which {J}’} are the binary synapses in the replicated system and {W}’} represent the
weights of the replicated spherical model. The aligning fields of the patterns are defined as
follows

!
AP Z £b JoEr Al _ 2 :;fw?g!“, (A.2)
7% p‘N > i3

Following Gardner (1988) we introduce Fourier representations of unity in order to facilitate
the pattern average by exfracting the i;‘}“ from within the cost functions:

N

1= 3 ag,(yﬁ —Z;ﬂﬁgﬂ) j du? 5(u — TZ‘;"*W”;—‘“) (A3)

=N i

By arbitrarily introducing another similar identity,

N
1= 3 s (- Tt sencilef) (a4)
J

a=—N

the eventual emergence of the quantity f = J2_;{1 + N1 Z_,- (TJ-W;);} is assured, where
denotes a Boltzmann-weighted average. Performing the pattern average, invoking
(gjf") = (t and (g}‘g,;’) = §;;6*", produces a factor of the form

2
B 1 b

which, on expanding the square, produces precursors of the quantities q, @, I, m, r, §
and p. (Contributions from higher-order cumulants vanish in the large-N limit.) The limit
N — co allows the summations over tﬁ and yﬁ to be converted into integrations, with an
associated rescaling of uf, and zj. Further partitions of unity are introduced & la Gardner,
and in the limit ¥ — oo, these various integrations may be evaluated using the method
of steepest descents. At the saddie point, we assume replica-symmetric values of all order
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parameters, an assumption that seems justified for the ranges of & of interest (Gardner 1988,
Krauth and Mézard 1989). By this stage the thermodynamics depend on the extremization,
in the limit n — 0, of a cumbersome free-energy functional;

Gle,m, i, q,4,0, 0,57 11,55p, )
= (n(e — mm) + Ln{l — n)(ggd + Q0 + ) +n(n — DIl — n(s5 + pp)
+aGo(m.q, Q,1,L,5, p) + Gi(e, . 4, 9, 7,1,8, p) (A6)

with respect to all parameters, and in which
_ 5920 b 1, b2 gbingp
Go=In|[] [ dy" o —expliy’s” - $z")* - B&*" ()
b
dx? du?
x f do? = exp(in®x — 1Y - B (1) f at* == exp(ir's® — L u")?)

X exp ( - beubm - Z(zbch +xbxc0 + ubu"r))
)

b<re
X exp ( - Z xbutl — Z(szcs + zbucp))} (A _
bc be .

and
Gy =1n[1']"rm f dW? exp(—e WP + W)
b

X exp (Z(J byeg + WEWeQ + sgn(W?) sgn(W“)?))

b<e

X eXp (Z W sgn(We) +-Z(J"W°§ + I sgn(W°) ﬁ)) } - (A
b be

Given that the order parameters s, §, p and p enter (A.6) only at order 2, it is necessary to
be careful to retain terms up to this order while performing the limit # -» (; usually neural
network or spin-glass problems require only the term in n! of their free-enerzy functionals.
(In a similar study Wong et af (1992) follow an alternative strategy.) On simplifying Gy
one finds that this function is independent of m, r, I and p, which means that their conjugate
parameters, 1, £, { and p, vanish at the saddle point. This observation allows G, to be
simplified as only terms up to first order in these conjugate variables are needed. Thus it
emerges that the joint free energy (—(NA)~!lim, ,o(Z" — 1)/n) is just the snm of the free
energies of the two components, as would be expected. These constituents themselves are
determined by extrema of two functionals familiar from earlier works:

A

_g
20 +25)

+ othx In [[ Dy exp (-—ﬁgsl’l_‘ (y 1-0 —x\/a))] (A.9)

nle™ =+ 100+ —L1In(@ +2¢)
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(Gardner 1988) and

niG™ =141 —g) + f Dx 1n(2 cosh x/§)
+a f Dx]n[ f Dy exp (--ﬁgbi" (y\/l —g —xﬁ))] (A.10)

{Krauth and Mézard 1989), in which the shorthand, Dx = dx exp(-—%xz)/\/.'l:rr, has been
used. Thereafter, the remaining order parameters ate given as follows

VOri=@ 2
I = Q[ \/7 r= Dx{Zf Dy] (A.11)

f Dx sech? (x ) (A.12)

5=

O +2¢
with

§=a;—stka ln[fDu GKP("ﬁgbin (HM—xﬁ))]

x In [ f Dv exp (—ﬁgsPh (vﬁ — O +k/0—2/q - sx/,/z;‘))] (A.13)

and

- )
p:nyDk tanh (k,/@_gz/gﬂsf@ -zfy Dx. (A.14)
0

So far, we have not specified the forms of the cost functions g and g%, Restricting
ourselves to the binary MsN, we will always have gb"(A) = 9(«™™ — A). On taking the
zero-temperature limit, 8 —> co, this requires that all patterns have a stability at least as
large as %2, For the spherical model, three learning rules may be considered readily within
the formalism developed:

(i) taking g (A) = G« — A) leads to a spherical maximally stable network;

(ii) the choice g"(A) = L(A — «**™)? produces a psendo-inverse network, for which
all patterns have the same stability;

(iif) using g¥"(A) = A gives rise to a Hebbian spherical model, equivalent to the
prescription Wj; =3, gff /«/W
On selecting forms for the cost functions, the limit § — oo is taken (thereby eliminating
non-optimal networks). The sphencal model can be saturated by taking the limit @ — 1, in
which limit O diverges, with § also diverging such that the ratio §2/0 remains finite. The
binary model is saturated using the zero-entropy condition (limg_,eo 117! G"“1 e, i, BY =0,
following Krauth and Mézard (1989). It is assumed in taking the zero-temperature limit
that the quantity Q - s?/q remains finite. The remaining order parameters, s, §2/ 0 and
p, follow from straightforward numerical solution of the saddle-point conditions, and the
values found are consistent with the assumption @ — 5%/g > 0. The significance of this
observation is discussed in the main text.
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