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The weight-space of the binary perceptron 
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Depamnent of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 22 July 1993 

Abstract With a view to finding features of Lhe weight-space of lhe binary perceptmn that 
might be instructive for mining binary-synapae neural networks. the maximally-stable percepuon 
having binary-valued weights is c o m m  with continuous-weight perceptrons, for universal 
choices of stored patterns. The fraction of synaptic-weight7 correclfy predicted by clipping the 
SYMPSCS of the continuous network is calculated in the thermodynamic limit and compared with 
simulition result7 for smaller systems. Numerical experiment7 show good agreement wilh theory 
but in addition, indicate that those binary synapses likely to be wrongly predicted by weight- 
clipping are predominantly those which are weakest in the continuous-synapse perceptmn. 
Although not rescuing haining time from growing exponentially in the system size, ow results 
suggest ways of significantly accelerating Lhe search for successful, albeit possibly imperfect. 
neural networks with discrete-valued couplings. 

1. Introduction 

Although, generically, neural networks have many attractive properties, such as an ability 
to learn behaviour from examples and to function as associative memories (see e.g., Muller 
and Reinhardt 1990). unsurprisingly, their actual implementation is generally not facile. 
However, the species of network, and particularly the nature of its synapses, often greatly 
influences the ease with which such a network may be trained to fulfil a particular task. 
Networks whose synaptic weights may take a continuum of values are typically far easier 
to train than those with discrete-valued synapses, in spite of the practical attractions of the 
latter in terms of simplicity and robustness. Training procedures for continuous-synapse 
systems may profitably invoke gradientdescent methods; back-propagation (Rumelhart et 
al 1986) being an extreme example or the AdaTron algorithm (Anlauf and Biehl 1989) is 
a more sophisticated scheme. For discrete-synapse networks such an approach is clearly 
inadmissible, and even simulated annealing is apt to fail to find good choices of weights in 
finite time (Homer 1992). 

In order to try to identify general features of binary-synapse networks, particularly 
relative to similar networks with continuous synapses, we have examined the prototypical 
task of associative memorization of random pattems by a network of N + 1 formal 
neurons, Si E (&I), i E 10 ... N}.  The neurons are linked by synapses, J t j ,  and have 
a discrete-time dynamics Si(t + 1) = sgn(N-'l2 E, JjjSj(r)). A set of aN binary pattems, 
c/ E [?cl), p E { I  . . .aN],  are intended to be attractors of these dynamics, representing 
the memories, or concepts, learned. Requiring that these pattems are fixed points of the 
neuronal dynamics, thereby demanding that the aligning fields, At  = N- ' / *C .  {!'Jij$, 

are all positive, generally leads to finite basins of attractions for the pattems onl; i i  the As 
exceed a non-zero positive threshold, K. Imposing such requirements allows attention to be 
confined to synapses feeding only a single neuron, which reduces the training problem to 

0305-4470193/226173+13$07.50 @ 1993 IOP Publishing Ltd 6173 



6174 

a perceptron architecture (i.e. a single output neuron connected to N input units). Given 
that training a binary perceptron with noiseless data. corresponding to the maximally stable 
rule (AY t K t 0 V i ,  w), generally appears to be more demanding than learning optimal 
behaviour for noise-corrupted information (see Penney and Sherrington 1993), it is the 
former task that will be addressed here. The practically more interesting problem of 
networks learning a rule from examples (see Watkin et al 1993 for a recent review) is 
expected to suffer from similar impediments to the idealized problem which we shall be 
considering. Further, we will assume the most extreme form of discrete synapses, namely 
those limited to values -+I only. 

A number of training schemes for binary-synapse networks have been proposed. 
Amongst these, the simplest is the clipped Hebb rule (van Hemmen 1987), genetic 
algorithm have shown some value (Kohler 1990, Fontanari and Meir (1991) have even 
used a genetic algorithm to evolve an iterative learning algorithm), and corruption of a 
network with continuous weights has been suggested (P6rez Vicente et d 1992, Penney 
and Sbenington 1993). In this paper we will reexamine the latter method and explore 
how much information about successful binary-synapse networks might be inferred from a 
system with real-valued synapses, whose direct construction is likely to be far more readily 
accomplished than the system of ultimate interest. 

For a specific choice of patterns, er, we imagine a network with continuous-valued 
weights (J$& E R) to be mined according to one of three populm schemes: the maximally 
stable, pseudo-inverse and Hebb rules. Algorithms that produce, or rapidly approach, 
realizations of these rules are well known, but we are not aware of any analogous methods 
applicable to binary synapses, so it would be interesting to know how useful the existing 
algorithms might be in training binary-synapse networks. Given that the most obvious 
method of reducing a continuous synapse to a binary-valued one ( J P )  would seem to be 
clipping the former, producing J F  = sgn(J$), it would be instructive to know what 
proportion of synapses could be correctly predicted by such a method and, moreover, 
whether those synapses liable to be incorrectly predicted could be simply identified, 
thereafter to be subjected to attention. Below, we will first address theoretical predictions 
of the fraction of synapses correctly predicted by weight-clipping in large perceptrons, 
and thereafter discuss simulations which consider the second question in addition to 
corroborating the theory. 

R W Penney and D Sherrington 

2. The mutual overlap of binary and spherical networks 

For a given choice of patterns and training rules, the fraction of binary-valued synapses 
(feeding a particular neuron, i) that can be correctly deduced by weight-clipping the 
companion continuous network is given by 

in which .I? and J$ represent networks successfully trained on the patterns, according to 
their respective rules. If the networks concerned are large ( N  >> l), then it is expected that 
it is not the precise details of the patterns, er, that are significant, rather their stochastic 
properties, such as ({,?)e and (eft&. In acknowledging the possibility that the training 
procedures need not define networks uniquely (an effect accentuated by taking N large), 
it would seem reasonable to consider averaging f over choices of good networks of each 
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species, and over the selection of pattems (which should be a benign operation). It is such an 
average quantity that we have calculated, and on which we focus. The patterns are taken to 
be independent, unbiased random variables of unit variance; (t,?)r = 0, (f!’f& = Sj#’”. 

These cumulants are common to the distributions p ( f )  = 4(8(6 - 1) +8(6 + 1)) (true binary 
patterns) and p ( 6 )  = exp(-4c2)/& (‘Gaussian’ pattems), a point which has implications 
for numerical simulations of the theory. 

Purely as an analytical device, it is usual in discussing large continuous-synapse 
networks, following Gardner (1988). to impose a normalization constraint on these synapses, 
so that their weight-space becomes spherical, and thus has finite volume. The continuous- 
valued weights meeting such a constraint will be denoted Wjj, and choosing the norm such 
that cj Wi = N Vi ensures that the hyper-cubic weight-space of the binary network is 
a subset of the spherical space. Hereafter the continuous network will be referred to as 
‘spherical‘, and the labels ‘Jij’ will be reserved for the binary synapses. 

By applying replica mean-field theory to the joint weight-space of the two types of 
network, f and a number of other insmctive quantities may be calculated. The calculation, 
sketched in the appendix, gives expressions for the following objects (in the limit N + CO, 

and after suppressing the output index, i): 

which reflect the similarities between the two classes of network that we have targeted, 

(2.3) 

indicating the dispersal of networks over the two weight-spaces, and 

(2.4) 

giving more information ahout the spherical network. (x denotes a weighted average of h 
over all choices of the optimal networks of each species.) The order parameters Q and Q 
are familiar from earlier works (Gardner 1988, Krauth and Mizard 1989), and are central to 
the other conditions determining p ,  s, I ,  m and r .  The fraction of binary synapses duectly 
deducible by clipping the continuous synapses is given by f = i ( 1  + p ) .  The detailed 
expressions determining these order parameters are unilluminating, and are relegated to the 
appendix. 

For each of three classes of spherical network, we will explore how f varies with the 
pattern loading, a, for a < 0.83, this being the capacity limit of the maximally-stable 
binary perceptron (Krauth and Mkzard 1989). The three learning rules considered will be 
as follows. 

> 0 where d p h  is 
chosen to be as large as possible for the loading, a, subject to a spherical constraint on the 
synapses. There is no requirement d P h  = K ~ ’ ”  (where ,tbln is the analogous greatest lower 
bound on the stabilities achievable with binary synapses); these thresholds are independently 
determined by the pattern loading being such as to saturate each network. 

(i) The maximally stable network (MSN), for which AYPh > 
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(ii) The pseudo-inverse network (PIN) chaacterized by all patterns having the same 
stability: AFvh = K ~ P ~ .  Again, there is no implication that K " ~  = K~~~ or, indeed, that 
KMSN = KPIN. 

(iii) The Hebb rule has a Gaussian distribution of pattern stabilities centred on ASPh = 
(y-112. 

Each of these learning rules allow the quantity f to be determined readily, using 
appropriate performance measures given in the appendix; profiles of f(a) are shown in 
figure 1. It is seen that, although the spherical MSN correctly predicts the largest fraction 
of binary synapses compared with the other rules, simple weight-clipping does not produce 
near-optimal binary networks unless the loading, a, is small. However, it is noteworthy 
that upwards of 80% of synapses could be correctly determined using a spherical MSN. 
The pattern stability field distribution for the clipped spherical MSN (pc~(A)) was given in 
Penney and Sherrington 1993 (equation (5.1)), and using this one may calculate the fraction 
of patterns that are unstably stored by the derived binary model in the absence of any further 
training; 

For (Y = 0.8 y = 0.17, but by (Y = 0.4 the fraction of unstable patterns has fallen to 5%. 

Figure 1. The fraction of binary synapses (f) in an MSN that are c o n d y  licted by 
weight-clipping three types of spherical nelwororlts (maximally stable, pseudo-inverse and Hebb), 
compared wilh the upper bound a(3 + 4). as a funclion of pattern loading, a. 

The distribution of optimal binary networks over their own weight-space itself provides 
an upper bound on the average number of synapses that could be correctly predicted by 
any algorithm that produces a single continuous-synapse network. That there are optimal 
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binary perceptions that differ amongst themselves in a fraction of i(1-q) synapses implies 
that an arbitrary binary network must differ in at least a fraction $(I -4) of synapses from 
some optimal networks. Therefore, on averaging over all optimal networks, the number of 
bits correctly predictable by a single network is bounded above by 4(3+q)t. In contrast to 

 the spherical model, on saturation of a discretesynapse network the order parameter q does 
not generally reach unity (Krauth and M6zard 1989, Gutfreund and Stein 1990), indicating 
wide dispersal of these networks, e.g., for a N 0.8, q N 0.6. Although any algorithm 
that correctly predicted all the binary synapses of a particular optimal network would be 
a highly attractive scheme, that other optimal networks may not be close means that its 
average overlap with all optimal networks would not be so impressive. In the absence of 
a mechanism (and probably'quite a sophisticated one) in the spherical-model learning rule 
which favours its being useful for training a binary-synapse perceptron by weight-clipping, 
it is reasonable to assume that the overlaps, f, depicted in figure 1 would represent the 
overlap of any of the optimal binary networks with the given spherical model. This assertion 
is lent weight by numerical simulations. 

A further  question^ that can be addressed using the order parameters (2.2) and (2.3) is 
whether the centre of gravity of the optimal binary networks is parallel to that of the optimal 
spherical networks, i.e. whether = AT VLfor some choice of I? Equivalently, one 
could ask whether the minimum of N-' xj(% - AT)2, with respect to A, is zero. This 
quantity is minimized for the choice A = s/q, and from the positivity of each term in the 
summation one has the identity 

=+ Q -s2/q 20. 

Thus, whether or not the two species of optimal networks have centres of gravity that 
coincide may be determined using the order parameters~calculated. It would appear that 
this inequality is satisfied strictly. Thus, mapping all networks into the spherical-model's 
weight-space, the optimal binary networks are seen to be distributed asymmetrically about 
the domain of optimal spherical models, which is perhaps contrary to intuitive expectations. 

3. Insight from numerical experiments 

The discreteness of the binary-model'sweight-space is amixed blessing; unlike a continuous 
space, the possibility of searching all points for the best possible network is open, whilst 
this discreteness is at the root of the difficulty of constructing algorithms for training binary 
perceptrons. Learning by exact enumeration of all 2" states of the binary synapses is 
seemingly the only method known to produce optimal networks, despite the exponential 
divergence of training tims with system size. In seeking to examine the properties of 
optimal perceptrons, as addressed by the analysis, we are forced into exact enumeration, 
and hence are limited to small system sizes relative to those accessible to algorithms such 
as the AdaTron. 

t More rigorously, one may consider bounding p = N-' E, Tsgn(w)  by the maximum of this quantity with 
respect to {Wj} .  The supremum occurs for sgn(w) = s&), but from the identiy N-' cjCT- sgn(T))2 > 0, 
one obtains p < $(It 4). hence f < $(3 f 4). 
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The theoretical predictions of the previous section suggest that existing learning rules for 
continuous-synapse networks will always wrongly predict a finite fraction of synapses in a 
binary network. Given that the lower bound on this fiaction is finite, if exact enumeration of 
the untrustworthy synapses was undertaken, this part of the training process would still scale 
exponentially with the number of connections. However, if only perhaps 40% of couplings 
required attention, learning time would scale as rather than eAN for the whole system. 
For practical applications the increase in accessible system sue thus afforded might well be 
significant 

In performing simulations we have sought to test the hypothesis that those spherical- 
synapses that are weakest are those that least-reliably predict binary-valued weights. It seems 
unlikely that a very weak synapse in the spherical model could most often be replaced, in 
converting it to a binary value, by a stronger synapse having only the same sign. Further, 
those synapses that are strong in the spherical model are likely to he highly significant in 
stabilizing patterns, and therefore not sensibly converted to one of opposing sign, as well as 
being potentially weaker. In order to examine these ideas we have followed the following 
strategy during the enumeration of the states of the binary synapses: 

For a given random, choice of patterns, {e;], a spherical-synapse network is trained on 
these patterns using either Hebb's rule or the AdaTron algorithm. The starting configuration 
of the binary synapses is derived by clipping these spherical weights. (A random starting 
configuration is also considered.) 

The synapses are prioritized according to their magnitude in the continuous-synapse 
network, and relabelled so that Wj < Wj+l. 

The stability of the least stable pattern (according to the initial state of the binary 
perceptron) is noted. 

The 2' states of weight .IO are explored and if either of these two states produces better 
minimum stability, this stability is noted and the relevant choice of synapses is recorded. 

The 2* combinations of JO and 51 are tested with similar procedures. 

All 2N combinations of all synapses are examined in search of the maximum lower 
bound on pattern stability, again noting the configuration that produces it. 
Thus after the full enumeration, the accuracy of the initial weight-configuration is 
manifested. Further, the evolution of the minimum stability during the enumeration indicates 
to what extent the use of the spherical network might allow subsequent training to be 
confined to only selected binary synapses. If the instantaneous best minimum stability 
rapidly approaches its asymptotic value then enumeration of only a subset of all synapses 
would seem necessary; a more gradual improvement would signal that states of a larger 
fraction of synapses would need exploring before the optimal network could be approached, 
or attained. By continuing enumeration to completion, we may identify the optimal network 
and compare it with the spherical model. 

In affecting such a comparison an important feature of the theoretical approach must 
be addressed. Given that our analysis relies on the taking of the thermodynamic l i t ,  
N + 00 (formally representing very large systems), and that in this limit only low-order 
cumulant averages of the pattern elements, .$, have significance, for finitesize systems 
the higher-order cumulants of the 6: will influence the suitability of the theory. As far 
as the analysis is concerned, the .$ behave as Gaussian random variables (hence with 
only two non-trivial cumulants), even though they strictly can assume only binary values 
if they are to represent neuronal states. Given the modest number of synapses that can 
be enumerated without inordinate consumption of computer time, it is unsurprising that 
theory and simulations do not agree well when true binary patterns are used. However, 

. 
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in common with Krauth and Opper (1989) we find that the use of Gaussian pattems (for 
which p($)  = exp(-;$?')/&) brings theory and experiment into far more convincing 
correspondence in their average behaviours. It is interesting that on average, binary patterns 
behave more favourably than Gaussian patterns in terms of producing larger overlap with 
the spherical model. Large fluctuations about the average behaviour beset both forms of 
pattern however; this is another symptom of the meagre number of synapses. 

0- 
- 9  

-0.5 - 
:f 

-1 - 

-1.5 
-$ 
r 1 - 
0 5 10 15 20 25 

Bit  

Figure 2. The evolution of the minimum pattern stability found, Y, with the number of 
enumerated, 'bit'. Only binary patterns are considered, for N = 25, P = 13 +e = 052. 

Figure 2 shows the evolution of the maximum lower bound on pattern stability during 
the enumeration and indicates the clear advantage of pre-training the binary network using 
its spherical companion. The figure suggests that those synapses that are strongest in the 
spherical model do appear to be reliable in predicting binary-valued synapses. As a further 
test of this hypothesis, we also calculate the average magnitude of those spherical weights 
that correctly predict their binary cousins (( [ W,l)) relative to the magnitude of the remaining 
weights that make erroneous predictions (([Wfl)). This ratio can be expressed in terms of 
accessible quantities (U), (2.4); 

and is depicted in figure 3. Both simulations and theory lend some support to the 
hypothesis, and again the behaviour for true binary pattems appears more favourable than 
for Gaussian patterns, which themselves show better correspondence with the theory, as 
might be expected. 

The optimal binary networks identified during the enumeration procedure allow the 
results of the previous section to be tested; comparison of theory and experiment is given 
in figure 4. 
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2-  

I I I 1  I I I , ! , , , I  
0.2 0.4 0.6 0.8 a 
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Fiyre 3. The ratio of thc magnitude of synapses in the spherical model which correctly predict 
the corresponding binary synapses ((lWt])), to those weights which make incorrect predictions 
((IWrl)). Simulation results for N = 25 ye shown as circles (Gaussian p m m s )  and triangles 
(binary patterns) 

0 0.2 0.2 0.6 0.8 

Figure 4. Comparison of the theoretical prediction of the fraction of correctly predicted binary 
synnpses, f ,  with simulation results for N = 25. Both binary paltems (triangles) and Gaussian 
patterns (circles) are shown, with error bars obtained from an ensemble of p m m s .  The 
theoretical curves are as found in figure 1. 
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In all cases, simulation results represent averages over approximately 100 choices of 
patterns, and error bars, where shown, are standard deviations of the mean values represented 
by the plotted points. The standard deviations of the relevant quantities themselves are a 
factor approximately 10 larger, and that these are generally large for the system sizes 
examined confirms the strong finitesize effects manifested by the binary perceptron (Amaldi 
and Nicolis 1989, Krauth and Opper 1989, Demda et al 1991). 

4. Conclusion 

Rather than examining the weight-space of the binary perceptron in isolation (e.g. Fontanari 
and Kaberle 1990), we have compared this with the weight-space of a companion network 
with continuous-valued weights, but storing the same patterns as the binary network. Limits 
on the utility of a network with continuous-synapse values in training one with binary 
synapses have thus been indicated. Accessible algorithms applicable to the real-valued 
synapses have been shown to be useful for directly predicting a significant fraction of the 
discrete synapses (thereby rating the starting point in the training scheme of P6rez Vicente 
et al (1992)) and, moreover, to provide guidance as to which weights are less faithfully 
predicted. Simulation results have suggested thattraining by exact enumeration of the binary 
weights may be facilitated by examining the corresponding real weights, thereby allowing 
larger system sizes to be trained by this method than without any ~. such information. 
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Appendix 

An overview of the weight-space calculation leading to expressions for the quantities in 
(2.3), (2.4) and (2.2) will be given. Most of the methods of such calculations are widely 
used, particularly following the work of Elizabeth Gardner (1988). 

It is typical of a mean-field theory that the calculation of a system’s free energy 
naturally highlights the order parameters of physical significance, without necessitating prior 
insight. Given that we will be addressing large, range-free (or infinite-dimensional), but 
disordered, models, replica mean-field theory is the obvious methodology to employ. Thus, 
by examining the total free energy of the union of a binary- and spherical-synapse network 
we expect to be able to find physically meaningful quantities that reflect the similarities of 
these two components. Use of a simple trick ensures that the quantity of .central interest, 
namely the fraction of binary synapses correctly predicted by weight-clipping, emerges 
along with other relevant information. 
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For each weight-space we impose a cost-function, E ( ( J ] )  = E, g(AP) with a global 
annealing temperature, p-', and examine the entire set of perceptrons according to a 
Boltzmann weighting, exp(-p(E%-EQh)). On taking the temperature to zero, all networks 
which fail to optimize the cost function are excluded from consideration, leaving features 
typical of all optimal networks. Assuming the associated free energy to be self-averaging 
in the stored patterns, we invoke the replica method, and proceed to calculate integer 
moments of the partition function, subsequently analytically continuing our expressions to 
small replica number, exploiting the identity (InZ) = lim.,~((Z") - l)/n. Our starting 
point is 

(A.l) 
B 

in which ($1 are the binary synapses in the replicated system and (Wjb] represent the 
weights of the replicated spherical model. The aligning fields of the patterns are defined as 
follows 

Following Gardner (1988) we introduce Fourier representations of unity in order to facilitate 
the pattern average by extracting the from within the cost functions: 

By arbitrarily introducing another similar identity, 

64.3) 

-- 
the eventual emergence of the quantity f = ;{I + N-' Zj(Jj 4 ) e ]  is assured, where 
- denotes a Boltzmann-weighted average. Performing the pattem average, invoking 
(6;) = 0 and ($'~;) = S j p ' " ,  produces a factor of the form 

which, on expanding the square, produces precursors of the quantities q,  Q, I ,  m, r ,  s 
and p. (Contributions from higher-order cumulants vanish in the la rge4  l i t . )  The limit 
N + M allows the summations over t i  and yi to be converted into integrations, with an 
associated rescaling of U: and 2:. Further partitions of unity are introduced b la Gurdner, 
and in the l i t  N + 03, these various integrations may be evaluated using the method 
of steepest descents. At the saddle point, we assume replica-symmetric values of all order 
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parameters, an assumption that seems justified for the ranges of (I of interest (Gardner 1988, 
Krauth and Mizard 1989). By this stage the thermodynamics depend on the extremization, 
in the limit n + 0, of a cumbersome freeenergy functional, 

with respect to all parameters, and in which 

Go = In [ 1 dyb dzb z;; exp(iybzb - ~ ( z  1 b 2  ) - Bgb'"(yb)) 

dxb dub 
2n 2z. 

x dub - exp(iubxb - 4 ( ~ ~ ) ~ - p g ~ p ~ ( u ~ ) )  /dtb - exp(itbub-4(ub)') 

and 

GI =In n T r p  dWb exp(-sWb2f611WbI) 
[ b  

Given that the order parameters s, ?, p and $ enter (A.6) only at order n2, it is necessary to 
be careful to retain terms up to this order while performing the limit n + 0; usually neural 

(In a similar study Wong et a l  (1992) follow an alternative strategy.) On simplifying Go 
one finds that this function is independent of m, r, I and p ,  which means that their conjugate 
parameters, 61, i, f and $, vanish at the saddle point. This observation allows G1 to he 
simplified as only terms up to first order in these conjugate variables are needed. Thus it 
emerges that the joint free energy (-(Np)-llim,,o(z" - I ) /n)  is just the sum of the free 
energies of the two components, as would be expected. These constituents themselves are 
determined by exbema of two functionals familiar from earlier works: 

~ ~ network or spin-glass problems require only the term in n' of their free-enqy functionalS. 
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(Gardner 1988) and 
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G - zq(1-  q )  + Dx ln (2coshxd)  s .-I bin - I - 

(Krauth and MBzard 1989), in which the shorthand, Dx = dx exp(-$x ' ) /Z,  has been 
used. Thereafter, the remaining order parameters are given as follows 

i 
s = - J Dx sech' (x&) 

Q+2E 
(A.12) 

with 

i = c r ~ / D x D k l n [ / D u  as exp(-,8gbi"(ufi-xfi))] 

and 

p = J D y D k t a n h ( k d X + y B / & ) - Z L  Y J D i 7 i = D  Dx. (A.14) 

So far, we have not specified the forms of the cost functions gbn and gSph. Restricting 
ourselves to the binary MSN, we will always have gbi"(A) = O(K'. - A). On taking the 
zero-temperature lit, B -+ w, this requires that all patterns have a stability at least as 
large as K ~ ~ " .  For the spherical model, three learning rules may be considered readily within 
the formalism developed: 

(i) taking gsph(A) = O(KSph -A) leads to a spherical maximally stable network; 
(ii) the choice gsph(A) = f ( A  - K ~ Q ~ ) '  produces a pseudo-inverse network, for which 

all pattems have the same stability; 
(iii) using gsPh(A) = A gives rise to a Hebbian spherical model, equivalent to the 

prescription w;] = E,, $,?$/&7. 
On selecting forms for the cost functions, the limit ,9 -+ w is taken (thereby eliminating 
non-optimal networks). The spherical model can be saturated by taking the limit Q -+ 1, in 
which limit 2, diverges, with i also diverging such that the ratio ?'/a remains finite. The 
binary model is saturated using the zero-entropy condition (limb" n-'GEt(u, K, 8) = O), 
following Krauth and MBzard (1989). It is assumed in taking the zero-temperature l i t  
that the quantity Q - s2/q remains finite. The remaining order parameters, s, Bz/4 and 
p .  follow from straightforward numerical solution of the saddle-point conditions, and the 
values found are consistent with the assumption Q - sz/q > 0. The significance of this 
observation is discussed in the main text. 
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